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A multi-valued mapping of a reflexive real Banach space into its subspace is a
metric projection for a suitable equivalent norm iff it has non-empty closed convex
values, is norm-to-weak upper semi-continuous, and is semi-linear. As an applica-
tion of this characterization we prove that, given an infinite-dimensional subspace
of codimension at least two in a reflexive space, there exists an equivalent norm
such that the subspace is Chebyshev but the metric projection is not continuous.
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INTRODUCTION

Let M be a closed subspace of a real normed linear space X. A multi-
valued mapping P: X -2 is called a metric projection after renorming if
there exists an equivalent norm [-|| on X such that P is equal to the metric
projection onto M in (X, If|-]|).

In his interesting paper [2], A.L. Brown gave a characterization of
metric projections after renorming in the case of finite-dimensional X. The
present paper is devoted to the investigation of metric projections after
renorming in infinite-dimensional spaces.

In Section 1 we give a characterization of parts (i.e., multi-valued selec-
tions) of metric projections after renorming. The main result of this paper
is contained in Section 2. Theorem 2.6 asserts that, if X is reflexive,
P: X > 2™ is a metric projection after renorming if and only if it has non-
empty closed convex values, it is norm-to-weak upper semi-continuous,
and semi-linear with respect to M (see Definition 1.1(i)). As an application
of this result we prove in Section 3 that, given an infinite-dimensional sub-
space of codimension greater than one, a reflexive Banach space can be
equivalently renormed so that the subspace be Chebyshev and the metric
projection be not continuous (Theorem 3.4). Till now, there have been
known only several examples of subspaces in reflexive spaces with discon-
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tinuous metric projections [1, 7, 5, 8], all of them dealing with a suitable
renorming of /,. Our result states that such an example provides any
subspace (with trivial exceptions) of any infinite-dimensional reflexive
space {(after a suitable renorming).

Let us state some notations and definitions. For a multi-valued mapping
P: X — 2" we shall denote D(P)= {xe X; P(x)# &} (the domain of P}
and we shall often write P(x)=y instead of P(x)= {1}. We shall say that
Pis a part of Q: X - 2¥ if P(x)c= Q(x) for any xe X.

P is called norm-to-weak upper semi-continuous ({n—w)usc) if {or any
x € X and any weakly open set ¥ with P(x) < V' there exists an open {in the
norm topology) neighborhood U of x with P(Lj< V.

We shall denote by X/M the quotient space, by @, the quotient
mapping x+—x+ M, and M-={feX*; f(m}=0 for any me M}. The
metric projection of X onto M is the muiti-vaiuved mapping which sends
each point x € X to the set of best approximations {nearest points) to x in A4.
The subspace M is called proximinal if each point of X lies in the domain
of the metric projection onto M. If in addition the metric projection is
single-valued then M is called Chebysker.

The duaiity mapping on X is the mapping J: X — 2*" defined by J{x}=
{feX* fx)=|fl-1x|] and |f| =|x|}. By the Hahn-Banach Theorem

-y

D(J)=X. 1t is a well-known fact that J is (n-w}usc in reflexive spaces. The
norm on X is smooth (Fréchet smooth, resp.) if the duality mapping J is
single-valued (singie-valued and continuous, resp.).

A closed affine subset 4 of X is tangent t0 a convex set K at a point x
if xe Xn A< ¢k, where ¢K is the boundary of K.

All (normed) linear spaces in this paper are real

1. PARTS OF METRIC PROJECTIONS AFTER RENORMING

DefFiNiTION 1.1, Let M be a subspace of a linear space X, P: X — 2%
{i) P is called semi-linear with respect 10 M (w.i.t. M) if
Plkx+m)=kP(x)+ m, whenever ke R, xe X, me M.

(i) The mapping P determines another mapping P: X — 2", defined

—~ ]

) | .
Pixy= J ?(P'(I.Y-I—u)—u): U

t#0,ue M t#0.ue M

-Pex +tu) —u,

where P'(x)= P(x) for xe X\M, P'(xj=P{xju {x} for xe M.
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Remark 1.2. (a) If P is semi-linear w.r.t. M, then P(m)=m for any
me M by Definition 1.1(1).

(b) It is clear that Pc B, and U,cp vep (IX+M)=D(P) if
D(P)# .

LEMMA 1.3. Let M, X, P be as in Definition 1.1. Then the following are
equivalent.
(i) P is a part of a semi-linear (w.r.t. M) mapping S: X — 2.
(ii) P is semi-linear w.r.t. M.
(iii) P(m)c<{m} for any me M.

Moreover, if the conditions above hold, P is the minimal semi-linear exten-
sion of P.

Proof. (a) The implications (ii)=> (i) = (iii) follow immediately from
Remark 1.2.
(b) Let (iii) hold. Then P'(m)=m, and therefore also P(m)=m, for
any me M. Let ke R\ {0}, xe X, me M. Then
. 1
P(kx + m) = U ;

1#£0.ueM

(P'(t(kx +m)+ u)— u)

= U k.klt (P'(ktx+ (tm+u))— (m+u))+m

t#0,ue M

=kP(x)+m

and the implication (iii) = (i1) is proved.

(c) Let P be a part of a semi-linear mapping S. By (iii) and Remark
1.2(b), also P’ is a part of S. Hence

Bx)= %(P’(tx—ku)—u)
1#0,ueM
< U % (S(ex +u)—u) = S(x)

t#0.ueM
by the semi-linearity of S. ||

Now we are prepared to characterize parts of metric projections after
renorming,
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THEOREM 1.4. Let M be a closed linear subspace of a normed [linear
space X and let P: X — 2™, Then the following assertions are equivalent.

(i} P is a part of a metric projection after renorming.

(i) F is a part of a semi-linear (w.r.i MY mapping which is locaily
bounded at the origin, and D(P) is in the domain of a metric projection afier
renorming.

{itiy P(m)c< {m} for any me M,

of sup{jz—ul 7] 5 1eR\ {0}, ue M, | x| <$, ze Pzx+u)} < x,
>

{3
{1}

and D(P) is in the domain of a metric projection after renorming.

Proof. (a) Each metric projection onto Af is semi-linear w.r.t. M and
locaily bounded at the origin (see, e.g., [67]). This proves {i)=> (ii).

(b} The equivalence (ii) <> (iii} follows from Lemma 1.3 and from the
easy fact that the condition (1) is equivalent to the iocal boundedness of F
at the origin.

(c) Let P satisfy (ii) and let | -|| be an equivalent norm: on X such
that D(P)< D(n), where n: X —» 2* is the metric projection: in (X, |-}
The semi-linearity of 7, together with Remark 1.2(b), implies D(P) < D(n).
Denote by B the unit ball in (X,i-}) and put Z=cBna (),
Ko=(12) Bu(I—P)(Z), K=co0 K,. The set K is closed and convex, and
Oeint K. P is locally bounded at 0 because of its minimality among all
semi-linear extensions of P (Lemma 1.3). Hence, by the homogeneity of 2,
it is bounded on bounded sets. Therefore K is aiso bounded and symmetric.
This shows that K is the unit ball for an equivalent norm |- | on X.

Let xe2 be arbitrary. Then {x—mlfi= ix—n(x)|=fx|=1 for any
me M. Thus the affine space x+ M is tangent to B at x. By the
Hahn-Banach Theorem, there exists fe J(x)n M-, where J is the duality

mapping in (X, |-||). Now

flx—=P(x)=f(x)=1, fIE-P(E)=/(&)<1  forany Cel.

fy)<is  forany yeiB

These facts imply that £~'(1), and hence also x+ M, is tangent to X at the
points of x — P(x). In other words: P(x)c #(x) for xe X, where #: X — 2
is the metric projection in (X, | -] ).

Now let xeX be arbitrary. If xe(X\D(P))uM then clearly
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P(x)= #(x). If xe D(P\M, then (x —n(x)) [x —n(x)| ' is a subset of X,
and hence

P(x)=13<|i,x—7r(x)=-| LH(—Y)—-F n(x))
llx—n(x) |
B L x—7(x)
~ =l P e )+ v(x)
. [ x—m(x) e
< [lx —(x)| ﬂ(m>+ﬂ(x)—ﬂ(x), (2)

because P and # are semi-linear w.r.t. M. We have proved that
P(x)c P(x)=#(x) for any xe X, where # is a metric projection after
renorming. ||

Let us note that the idea of how to defines the needed equivalent norm
is due to A. L. Brown [2], who used it in R".

2. METRIC PROJECTIONS AFTER RENORMING

DEerFINITION 2.1. Let A be a subset of a normed linear space X. We shall
say that an fe X* strongly exposes A at a point xe€ A, if f(x)=sup f(4),
and x, — x whenever lim f(x,)=f(x) and x, € 4.

First we shall state an equivalence of two geometric conditions. Since it
is not substantial for further results, we omit the straightforward proof,
which uses only the identification of (X/M)* with M* and the following
theorem of Holmes.

THEOREM 2.2 [6]. Let m: X — 2™ be the metric projection of a normed
linear space X onto a Chebyshev subspace M. Then w is continuous iff the
restriction to X=G¢Bnn"'(0) of the quotient mapping Q, is a
homeomorphism onto the unit sphere in X/M. (B denotes the unit ball in X)

LemMA 2.3. Let M be a proximinal subspace of a normed linear space X.
Let n: X — 2™ be the metric projection onto M and let X =¢Bnn'(0),
where B is the unit ball in X. Then the following statements are equivalent.

(i) For any xeZX, there exists an feJ(x)nM* which strongly
exposes X at X.

(it) M is Chebyshev with n continuous and the unit sphere in X/M is
strongly exposed ar each of its points.
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THEOREM 2.4. Let M be a (closed) proximinal subspace of a normed
linear space X and let m be the metric projection onto M. Let the condition
(i) (or (it), equivalently) of Lemma 2.3 be satisfied. Let P: X — 2™ satisfv the
properties

(1} P(x) is non-empty, closed, and convex for anv x€ X,
(it} P is (n-w) usc,
(iit} P is semi-linear w.r.t. M.

Then P is a metric projection after renorming.

Proof. (a) First observe that the homogeneity of P and its norm-
to-weak upper semi-continuity at 0 imply its local boundedness at C.
Therefore there exists a positive constant L such that

sup |P(x)|i < L| x| forany xeX,

Cad

again by the homogeneity of P.

Using the notation of Lemma 2.3, define K,={1,2)Bu{i—P}Z]
K==t0 K,. As in the proof of Theorem 1.4, K is the unit ball for seme
equivalent nerm |- on X and P is a part of #, where 7 is the metric
projection onto M in (X, fi-].).

In order to prove the opposite inclusion 7 < P, it is sufficient tc prove

(x+ M)n Kcx— P(x) forany xelZ. 14y
in fact, {4) implies

w0 = et (e~ (A

[[x = 7(x)] \ilx—7

m(x)
(e lX—’E(\.H(('I*TW 11'.{ /}

/ —
e e

whenever x € X\ M. (We have used the fact that the distance of a point of
2 from M (X, #-11) is equal to 1.}

{b) Let xeX be arbitrary and let f'e J(x) n M~ expose X strongly at
x. Suppose that ze(x+M)nK is such that zéx— P(x). The
Hahn-Banach Theorem gives the existence of a ge X* such that jjgi=1
and g(z)>s:=sup g(x — P(x)). Put ¢=(g(z)—s5)/3. The mappmg I—P 13
{n-w) usc, hence there exists a 4 >0 such ahaf E—P(ljcg Hi{—occ,5+
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whenever | — x| < 4. This, together with the strong exposing of 2 by f at
x, ensures the existence of a § >0 with the property

E—P(E&)c g ((—oc,s+¢)), whenever Ee 2 and 1 — f(&) < 4. (5)
There exists a sequence {z"} < co K, converging to z. It is possible to

write
k(n)
2" =5(3-0")+ ) A7 (&7 —pY),
i=1
where

kin)
b"eB, ek, ple P(ET), 2120, Y ir=1.
i=0

Now ;5 — 0, because
1= f(x) = f(z) = lim f(z")
k(ny
=lim ((;,g/z) fe+ Y i;’f(f:’))
i=1

k{n)
<lim inf </:g/2 +Y zg)
i=1
=lim inf(1 — 43/2) <lim sup(1 — A3/2) < 1.

Putting 3, = (1 — f(z"))"?, we have 8, — 0 and hence 8, <6 for n>n,. Let
us denote

I,={1,2, .., k(n)}, A,={iel,;1—f(&})=6,}. (6)

For any ne N,

(0, =1—f(z") =75(1 — f(b")2) + ¥, 47(1 —f(E]))

iely,

> Y A—fEN= Y A6,
ie Ay ie Ay
Thus ZieAq /A':'zéan’
Let n=ny. Then, by (3), (5), and (6),

gz =(24/2) g0+ ¥ A g(&l—p))
ic Ay

+ Y Alg(Er—pr)

iel, Ay
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~~J
N

<igi2+ Z TI+LY+ Y Jis+e)

iel, A,
=(s+e)+ig(li2—s—e)+ Y i1+ L—s5—¢)

<s+e+/ip|l2—s—el+ 3+ L~5—

[32)

This implies g(z") <5+ 2e = g(z) — ¢ for sufficiently large #. But this is in
contradiction with z" - z. |

Remaric 2.5. It is clear from the proof of Theorem 2.4, that the unit
ball of the required equivalent norm couid be defined by X=
co(xBu {I— P)(ZX) with an arbitrary ze (0, 1}.

As an easy consequence of Theorem 2.4 we get the main result of the
present paper.

THEOREM 2.6. Let M be a closed subspace of a reflexive Banach space X
and let P: X —2Y. Then P is a metric projection after renorming if and only
if P has non-empty closed convex values and P is {n-w)usc and semi-finear
w.rt, M.

Proof. Necessity. Let P be the metric projection onto M in (X, |- . It
is easy and well known that P has non-empty closed convex vaiues and P
is semi-linear w.r.t. M. Suppose P is not (n-w)usc at a point x. There exist
a weakly open set W and sequences {x,}< X and {1, " < M, such that
P(x)c W, x,— x and 3, € P(x,)\W. The sequence {‘w,,} is bounded since
fy,—xi<tr,—x,l +|x,—x|=dist(x,, M)+ ix,— Using  weak
compactness, we can suppose that y, converge weakiy to some y, without
any loss of generality. Clearly ye M and |x— y| <liminfix,— y,i
lim inf dist{x,,, M) =dist(x, M). Thus ye P(x}< W, which is in contradic-
tion with 3, ¢ W.

Sufficiency. By the Trojanski Renorming Theorem (see [27]), we can
suppose that X is equipped with a locally uniformly convex norm. Then the
unit ball B of X is strongly exposed at any point xe¢B by any feJ{x}
Consequently, the condition (i) of Lemma 2.3 is satisfied with =any
feJ(x)n M- (such an fexists by the Hahn-Banach Theorem). Clearly 3/
is proximinal since X is reflexive. By Theorem 2.4, P is a metric projection
after renorming. ||

Y o=

2 :r

3. DISCONTINUOUS METRIC PROJECTIGNS

In this section, the characterization of metric projections after renorming
(Theorem 2.6) is applied to the existence of discontinuous single-valued
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metric projections onto subspaces of a reflexive space after a suitable
renorming.

We begin with some lemmas. The first of them is a consequence of
C. Franchetti’s “(H)-property destroying method.”

LEmMMA 3.1 [4]. Every reflexive infinite-dimensional Banach space has
an equivalent smooth norm which is not Fréchet smooth.

LEmMMA 3.2. Every Banach space has an equivalent norm, such that its
unit ball is strongly exposed at some point by some element of the dual.

Proof. Let B be the unit ball of a Banach space X. Take any x e ¢B and
feJ(x). Then the set K=To(BuU { —2x, 2x}) is the unit ball of some equiv-
alent norm on X. It is elementary to see that K is strongly exposed at 2x

by £ 1

LemMA 3.3. Let X be a Banach space with dim X =2 and let Y be a
reflexive infinite-dimensional Banach space. Then there exists a mapping
F: X — Y which is homogeneous and norm-to-weak continuous, but F is not
continuous in norm topologies.

Proof. (a) By Lemma 3.1, there exists an equivalent norm on Y*,
which is smooth but not Fréchet smooth. Then the duality mapping J* on
Y* is single-valued, has its values in Y, is norm-to-weak continuous, but
is not continuous. Note that J* is homogeneous. There exists a sequence
{g,} = Y*suchthat || g,| =1, g, go€ Y* and J*(g,) do not converge to
J*(go) in norm.

(b) Consider an equivalent norm | - on X such that its unit ball B
is strongly exposed at some point x,e¢B by some feX™* |f]| =1
(Lemma 3.2). Define a continuous mapping ¢:[—1,1]—>Y by the
properties

n
0(0)=0, <p(1)=go,q>(——)=g,, for neN,
n+1

n n+1
is affi 0,1,2 d h| —,——|.neN,
@ is affine on [0, 1/2] and on eac [n+1 n+2:|,ne ,

o(t)= —p(—1) for te[—1,0].
Then the mapping 4:éB— Y*, h(x)=¢(f(x)), is bounded, continuous,
and odd. Hence the mapping H: X — Y*, defined by

H(0)=0, H(x)=|x||h(i> for x#0,

flx

is continuous and homogeneous.
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(c) Put F=J*< H Then Fis a homogeneous and norm-to-weak con-
tinuous mapping of X into Y. It remains to show that F is not continuous.

For any ne N choose an x,e¢B with f(x,)=r;(n + 1) (ifs existence is
assured by the connectedness of ¢B). Since f strongly exposes B at x,, we
have x, — Xx,.

71 \\
)_Jx‘gn

n-r-il'

,

Fv) =) =7 (o (-

Flxo)=J*H(xy)=J*(@(1))=J*(g0).

It follows that F{x,) do not converge tc F{x,), and hence F is not
continuous at x,. ||

THEOREM 34. Let M be a closed subspace of a reflexive Banach space X.
If codim M > 1 and M is infinite-dimensional, then there exists an equivaien:
norm on X such that M is Chebyshev and the metric projection onto M is no:
continuous.

Proof. Let ||-|| be an equivalent locally uniformiy convex norm on X
(see [3]). Then the metric projection m onto M is single-valued and con-
tinuous. By Lemma 3.3, there exists a mapping F: X/M — M which is
homogeneous, norm-to-weak continuous and not continuous, Define
P=F:Q,+n where Q, 1is the quotient mapping. Clearly, 7 is
hemogeneous and norm-to-weak continuous. P is also semi-linear w.r.t. A4,
because

Px+my=F(Q,(x+m))+a(x+m)=F(Q (x)i+7{x)+m

=P(x)+m for xeX, meM.

By Theorem 2.6, P is a metric projection after renorming. It remains ic
show that P is not continuous.

Take ¢,e X/M such that ¢,—¢e X/M but F(¢,) do not converge 1o

F(¢). Denote by g the restriction on n~'(0) on Q. Then, by Holmes'
theorem (Theorem 2.2), ¢ is a homeomorphism of n*‘( yonto X'M. Then
the points x, =g~ (&,) converge to the point x =g~ (), but P(x,})= F(Z,}
do not converge to P{x)}= F(&). This shows that P is not continucus
atx. §

COROLLARY 3.5. Let M be a closed subspace of a reflexive Banach
space. Then M is the range of a discontinuous single-valued metric projectior:
after renorming, if and only if M is infinite-dimensional and M is not «
fivperplane in X,
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Proof. The assertion is a direct consequence of Theorem 3.4 and of the
well-known fact that metric projections onto Chebyshev finite-dimensional
subspaces or onto Chebyshev hyperplanes in a reflexive space are
continuous. |

Considering Brown’s example [1], it is natural to ask the following

Problem. Does there exist an equivalent norm from Theorem 3.4 which
would be in addition strictly convex?
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