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A multi-valued mapping of a reflexive real Banach space into its subspace is a
metric projection for a suitable equivalent norm iff it has non-empty closed convex
values, is norm-to-weak upper semi-continuous, and is semi-linear. As an applica
tion of this characterization we prove that, given an infinite-dimensional subspace
of codimension at least two in a reflexive space, there exists an equivalent norm
such that the subspace is Chebyshev but the metric projection is not continuous.
r, 1991 Academic Press. Inc.

INTRODuCTIO"!\

Let 1\1 be a closed subspace of a real normed linear space X. A multi
valued mapping P: X ~ 2·H is called a metric projection after renorming if
there exists an equivalent norm III·I!I on X such that P is equal to the metric
projection onto M in (X, !II·II).

In his interesting paper [2], A. L. Brown gave a characterization of
metric projections after renorming in the case of finite-dimensional X. The
present paper is devoted to the investigation of metric projections after
renorming in infinite-dimensional spaces.

In Section 1 we give a characterization of parts (i.e., multi-valued selec
tions) of metric projections after renorming. The main result of this paper
is contained in Section 2. Theorem 2.6 asserts that, if X is reflexive,
P: X ~ 2M is a metric projection after renorming if and only if it has non
empty closed convex values, it is norm-to-weak upper semi-continuous,
and semi-linear with respect to M (see Definition l.l(i)). As an application
of this result we prove in Section 3 that, given an infinite-dimensional sub
space of codimension greater than one, a reflexive Banach space can be
equivalently renormed so that the subspace be Chebyshev and the metric
projection be not continuous (Theorem 3.4). Till now, there have been
known only several examples of subspaces in reflexive spaces with discon-
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:l-fETRIC PROJECTIO~S AFTER RE)<ORMI~G

tinuous metric projections [1,7,5,8], all of them dealing with a suitable
renorming of 12 , Our result states that such an example provides any
subspace (with trivial exceptions) of any infinite-dimensional reflexive
space (after a suitable renorming).

Let us state some notations and definitions. For a multi-valued mapping
P:X~2'u we shall denote D(P)={xEX; P(x)f=0} (the domain of P)
and we shall often write P(x)=y instead of P(x)= {y}. We shall say that
P is a part of Q: X ~ 2 tf if P(x) c Q(x) for any x E X.

P is calied norm-to-weak upper semi-continuous ((11 - It') usc) if for any
x E X and any weakly open set V with P(x) c V there exists an open (in the
norm topology) neighborhood U of x with P( C) c V.

We shall denote by X/M the quotient space, by QM the quotient
mapping Xl-->x+M, and M-= {IEX*; !(m,I=O for any mElvI}. The
metric projection of X onto Al is the multi-valued mapping which sends
each point x E X to the set of best approximations (nearest points) to x in M.
The subspace M is called proximinal if each point of X iies in the domain
of the metric projection onto /..-1. If in addition the metric projection is
single-valued then M is called Chebysher.

The duaiity mapping on X is the mapping J: X ~ 2X" defined by f(x) =
{IE X*, f(x) = Ilfli ·ilxl and 'In = Ilx!}. By the Hahn-Banach Theorem
D(l) = X. It is a well-known fact that J is (n-w)usc in reflexive spaces. The
norm on X is smooth (Frechet smooth, resp.) if the duality mapping J is
single-valued (single-valued and continuous, resp.).

A closed affine subset A of X is tangent to a convex set K at a point x
if x E Kn A c cK, where cK is the boundary of K.

All (normed) linear spaces in this paper are real.

1. PARTS OF METRIC PROJECTIO)<S AFTER RE~OR:l-fIKG

DEFI"IITIO:\' 1.1. Let Al be a subspace of a linear space X, P: X ~ 2.14

(i) P is called semi-linear \t'ith respect to M (\I·.r.t. M) if

P(kx + m) = kP(x) + m, whenever k E H, x E X, !11 E :\1.

(ii) The mapping P determines another mapping P: X ~ 2~;, defin,~d

by

P(x) = U
{:,=o. UE.\J

~ (P'(tx+u)-u)= U ~'P'(tX+tU)-li,
t ('" o. U E.1f [

where P'(x)=P(x) for xEX\M, P'(x)=P(x)u {x} for .,,(EM.
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Remark 1.2. (a) If P is semi-linear w.r.t. M, then P(m)=m for any
mE M by Definition 1.1 (i).

(b) It is clear that PcP, and U'ER.XED(P) (tx+M)=D(P) if
D(P)#0·

LEMMA 1.3. Let M, X, P be as in Definition 1.1. Then the following are
equivalent.

(i) P is a part of a semi-linear (w.r.t. M) mapping S: X ~ 2M
.

(ii) P is semi-linear W.r.t. M.

(iii) P(m)c {m} for any mE1H.

IHoreover, if the conditions abolje hold, P is the minimal semi-linear exten
sion of P.

Proof (a) The implications (ii) = (i) = (iii) follow immediately from
Remark 1.2.

(b) Let (iii) hold. Then P'(m) = m, and therefore also P(m) = m, for
any mEM. Let kEIR\{O}, XEX, mEM. Then

1
P(kx+m)= U - (P'(t(kx+m)+u)-u)

,#0. UEM t

U
1

k·- (P'(ktx+(tm+u))-(tm+u))+m
kt

=kP(x)+m

and the implication (iii) =(ii) is proved.

(c) Let P be a part of a semi-linear mapping S. By (iii) and Remark
1.2(b), also P' is a part of S. Hence

P(x)= U
'#0. UEM

c U
'#0. UE,H

by the semi-linearity of S. I

~ (P'(tx+u)-u)
t

1
- (S(tx + u) - u) = S(x)
t

Now we are prepared to characterize parts of metric projections after
renorming.
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THEOREM 1.4. Let Jl be a closed linear subspace of a normed lmear
space X and let P: X -4 2·tl. Then the following assertions are equivalent.

(i) P is a part of a metric projection after renorming.

(ii) F is a part of a semi-linear (w.r.t 1'\1) mapping which is locally
bounded at the origin, and D( P) is in the domain of a metric projection afia
renorming.

(iii) P(m) c {m} for any mE M,

inf sup{ iz- ul! ·Itl- I
; tE ~\ {O}, itEM, Ixl: < b, ZE P(tx+ u)} < x,

6>0
(1 )

and D(P) is in the domain of a metric projection after renorming.

Proof (a) Each metric projection onto l'vI is semi-linear W.I.t. M and
locaily bounded at the origin (see, e.g., [6]). This proves (i) => (ii).

(b) The equivalence (ii)~ (iii) follows from Lemma 1.3 and from the
easy fact that the condition (I) is equivalent to the iocal boundedness of P
at the origin.

(c) Let P satisfy (ii) and let I ·I! be an equivalent norm on X such
that D(P)cD(n), where n:X-42·H is the metric projection in (X, Ii'::)'
The semi-linearity of n, together with Remark 1.2(b), implies D(P) c D(n).
Denote by B the unit ball in (X, il·l) and put I=cBrl'iI-I(O),
Ko= (1/2) Bu (I-P)(I), K=co Ko. The set K is closed and convex, and
oE int K. P is locally bounded at 0 because of its minimality among all
semi-linear extensions of P (Lemma 1.3). Hence, by the homogeneity of fl,
it is bounded on bounded sets. Therefore K is also bounded and symmetric.
This shows that K is the unit ball for an equivalent norm Ii; ·Ii on X.

Let XEI be arbitrary. Then 'Ix-ml' ~ix-n(x):1 = lixl = 1 for any
mE M. Thus the affine space x + j\1 is tangent to B at x. By the
Hahn-Banach Theorem, there exists f E J(x) n M -, where J is the duality
mapping in (X, :1·11). Now

f(x-P(x»=f(x)= 1, f( ~ - P( ~) )= f( ~ ) ~ 1 for any ~ E I.

fey) ~ ~ for any y E ~ B.

These facts imply that f-I( 1), and hence also x + M, is tangent to K at the
points of x - P(x). In other words: P(x) c it(x) for x E I, where it: X -42.1

is the metric projection in (X, il . il ).
Now let x E X be arbitrary. If x E (X'\D(P)) '.J M then dearly
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p(x)cn(x). If xED(P)\M, then (x-n(x)) Ix-n(x)II- 1 is a subset of 2:,

and hence

~ ~( x-n(x))
P(x) = P I:x - n(x)il 'Iix _ n(x) 1+ n(x)

A ( x-n(x) )
=llx-n(x)IIP Ix-n(x)1 +n(x)

(
x-n(x) ) _

c Ilx-n(x)11 n Ilx-n(x)11 +n(x)=n(x), (2)

that
after

because P and n are semi-linear W.r.t. AI. We have proved
P(x) c P(x) c n(x) for any x E X, where n is a metric projection
renorming. I

Let us note that the idea of how to defines the needed equivalent norm
is due to A. L. Brown [2], who used it in [Rn.

2. METRIC PROJECTIO-SS AFTER REKORMING

DEFll'<ITION 2.1. Let A be a subset of a normed linear space X. We shall
say that anfEX* strongly exposes A at a point xEA, iff(x)=suPf(A),
and xn-->x whenever limf(xn)=f(x) and xnEA.

First we shall state an equivalence of two geometric conditions. Since it
is not substantial for further results, we omit the straightforward proof,
which uses only the identification of (X/M)* with M.L and the following
theorem of Holmes.

THEORE'vf 2.2 [6]. Let n: X --> 2M be the metric projection of a normed
linear space X onto a Chebyshev subspace AI. Then n is continuous iff the
restriction to 2: = cB n n -1(0) of the quotient mapping QM is a
homeomorphism onto the unit sphere in X/ j\,f. (B denotes the unit ball in X.)

LEMMA 2.3. Let Al be a proximinal subspace of a normed linear space X.
Let n:X-->2,11 be the metric projection onto M and letL=cBnn- 1(0),
where B is the unit ball in X. Then the following statements are equivalent.

(i) For any x E L, there exists an f E J(x) n Jl.L Irhich strongly
exposes L at x.

(ii) Jl is Chebyshev with n continuous and the unit sphere in X/AI is
strongly exposed at each of its points.
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THEOREM 2.4. Let 1\-1 be a (closed) proximinal subspace of a normed
linear space X and let n be the metric projection onto I'vl. Let the condition
(i) (or (ii), equiralently) of Lemma 2.3 be satisfied. Let P: X ---+ 2.\{ satis/v the
properties

(i) P(x) is non-empty, closed, and convex for any x E X,

(ii) Pis (n-w) usc,

(iii) P is semi-linear \\'.r.t. AI.

Then P is a metric projection after renorming.

Proof (a) First observe that the homogeneity of P and its noro
to-weak upper semi-continuity at 0 imply its local boundedness at O.
Therefore there exists a positive constant L such that

sup IP(x)li :;;; L Ix:1 for any XE X, {3 )

again by the homogeneity of P.
Using the notation of Lemma 2.3, define Ko={1/2)Bu(I-P)(I),

K = co Ko. As in the proof of Theorem 1.4, K is the unit baH for some
equivalent norm II· 'Ion X and P is a part of it, where ii is the metric
projection onto M in (X, Iii ·Ii).

In order to prove the opposite inclusion ii c P, it is sufficient to prove

(x + M) n K c x- P(x)

In fact, (4) implies

for any XE L. I A \, :.+ ~
\ ,

(

X - n(x) (/ X - ,,(x) \ \
x-ii(x)= Ilx-,,(x)ll· .. -it, I II

Ilx-n(x)1 \!x-n(xh//

((
x-n(x) \ \

clx-n(x)q II_ )1+ Af /nK !
, 1'\ - n(x ) /

(
X - n(x) I x - n(x) \ \ .

c:lx-n(x)ll, . ,-pI )Il=x-P(x)
\llx-n(x)I' \ix-n(x)ll, /

whenever x E X\M. (We have used the fact that the distance of a point of
I from M in (X, '11,111) is equal to 1.)

(b) Let x E}; be arbitrary and let f EJ(x) n M -'- expose I strongly at
x. Suppose that zE(x+M)nK is such that zrtx-P(x). The
Hahn-Banach Theorem gives the existence of agE X* such that 11 g! = 1
and g(z) > s := sup g(x - P(x». Put I; = (g(z) - s)/3. The mapping [- Pis
(n-w) usc, hence there exists a L1 > 0 such that'; - P( ~ ) c g -1( ( - x, 5 --- Ii) 1
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whenever :1 ~ - xii < A. This, together with the strong exposing of I: by fat
x, ensures the existence of a 15 > 0 with the property

~ - P( ~) c g -1( ( - 00, S + B)), whenever ~ E I: and 1- f(~) < b. (5)

There exists a sequence {zn} C co Ko converging to z. It is possible to
write

kIn)

7
n= ;n(!.bn)+ " I,,·(;n_pn)...., '~O 2 L.J '" I ~ 1 l'

i=l

where

kIn)

bn B en '""' n P(Vn) -n;:"o "'n 1E ,!;; E..:., p; E (;,10; "" , f...., 10; = .
;~o

Now ).~ -> 0, because

1=f(x)=f(z) = limf(zn)

=lim(().~/2)f(bn)+:~: A;lf(~n)

~ lim inf (;0~/2 + kf 1.7)
1=1

= lim inf( 1 - 10~/2) ~ lim sup( 1 - 1.~/2) ~ 1.

Putting bn= (1- f(zn))1/2, we have bn -> 0 and hence bn~ 15 for n ~ no. Let
us denote

I" = {1, 2, ..., k(n)},

For any n E 1'\,

(6)

ieAn leA"

Thus L.;EA, I.;' ~ 15".
Let n~no. Then, by (3), (5), and (6),

g(zn) = (}.~/2) g(bn)+ L ).7 g(~7 - pn

+ I 10;' g(~;'- pn
ie In\A"
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=(5+e)+i·3(1/2-s-8)+ L ;·7(1+L-5-8)
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This implies g(z"):s;s+2e=g(z)-e for sufficiently large n. But this is in.
contradiction with z/l ---+ z. I

Remark 2.5. It is clear from the proof of Theorem 2.4, that the unit
ball of the required equivalent norm could be defined by K =
co( xB u (I - P)(I) with an arbitrary x E (0, 1).

As an easy consequence of Theorem 2.4 we get the main result of the
present paper.

THEORE~ 2.6. Let lvl be a closed subspace of a reflexive Banach space X
and let P: X ---+ 2-t!. Then P is a metric projection after renorming if and only
if P has non-empty closed convex wlues and P is (n-w)usc and semi-linear
\Lr.t. lVI.

Proof Necessity. Let P be the metric projection onto M in (X, :1· .;_ It
is easy and well known that P has non-empty closed convex values and P
is semi-linear w.r.t. A1. Suppose P is not (n-w)usc at a point x. There exist
a weakly open set Wand sequences {x,,} c X and -: Yn] c ;\1, such that
P(x) c W, X/l ---+ x and y" E P(X/l)\ W. The sequence {J',,} is bounded since
ii Yn - xi: ::s; 11 Yn - xnl: + Ilxn - x 1= dist(x,l' .If) + [ixli - xi.. Using \\reak
compactness, we can suppose that y" converge weakly to some y, without
any loss of generality. Clearly J E M and :Ix - yl, :s; lim inLlx" - Yn:! =
lim inf dist(x,,, /vI) = dist(x, M). Thus y E P(x) c ~-V, which is in contradic
tion with Y/l i W.

Sufficiency. By the Trojanski Renorming Theorem (see [3 J), we can
suppose that X is equipped with a locally uniformly convex norm. Then the
unit ball B of X is strongly exposed at any point x E cB by any f E J(x).
Consequently, the condition (i) of Lemma 2.3 is satisfied with <ElY
fEJ(x)nM~ (such anfexists by the Hahn-Banach Theorem). Clearly J.1
is proximinal since X is reflexive. By Theorem 2.4, P is a metric projectioc
after renorming. I

3. DISCO"lTI]'.;cocs METRIC PROJECTIO~S

In this section, the characterization of metric projections arier renorming
(Theorem 2.6) is applied to the existence of discontinuous single-valued
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metric projections onto subspaces of a reflexive space after a suitable
renorming.

We begin with some lemmas. The first of them is a consequence of
C. Franchetti's "(H)-property destroying method."

LB1MA 3.1 [4]. Every reflexive infinite-dimensional Banach space has
an equiralent smooth norm which is not Frechet smooth.

LEMMA 3.2. Every Banach space has an equivalent norm, such that its
unit ball is strongly exposed at some point by some element of the dual.

Proof Let B be the unit ball of a Banach space X. Take any x E cB and
f E J(x). Then the set K = co(B u { - 2x, 2x} ) is the unit ball of some equiv
alent norm on X. It is elementary to see that K is strongly exposed at 2x
by f I

LEMMA 3.3. Let X be a Banach space with dim X~ 2 and let Y be a
reflexive infinite-dimensional Banach space. Then there exists a mapping
F: X --+ Y which is homogeneous and norm-to-weak continuous, but F is not
continuous in norm topologies.

Proof (a) By Lemma 3.1, there exists an equivalent norm on Y*,
which is smooth but not Frechet smooth. Then the duality mapping J* on
Y* is single-valued, has its values in Y, is norm-to-weak continuous, but
is not continuous. Note that J* is homogeneous. There exists a sequence
{g,,} c y* such that II g"il = 1, g" --+ go E y* and J*(g,,) do not converge to
J*( go) in norm.

(b) Consider an equivalent norm il·li on X such that its unit ball B
is strongly exposed at some point X o E cB by some f E X*, Ilfl = 1
(Lemma 3.2). Define a continuous mapping q>: [ -1, 1] --+ Y by the
properties

q>(0) = 0, q>(I) = go, q> c: 1) = g" for n E N,

. , [n 11 + IJq> IS affine on [0, Ij2] and on each n + l' n + 2 ' n EN,

q>(t)= -q>(-t) for tE[-I,O].

for x i= 0,H(O) =0,

Then the mapping h:oB--+ Y*, h(x)=q>(f(x)), is bounded, continuous,
and odd. Hence the mapping H: X --+ Y*, defined by

H(x) = Ixii h (~), Ilx~1

is continuous and homogeneous.
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(c) Put F = J* c H. Then F is a homogeneous and norm-to-weak con
tinuous mapping of X into Y. It remains to show that F is not continuous~

For any !1 EN choose an x n E cB with f(x n ) = ni(n + 1) (its existence is
assured by the connectedness of eB). Since f strongly exposes B at X G, we
have X n ~ X O.

( ( Ii \ \
F(xn)=J*H(xn)=J* \ cp 1-,-, ))=J*(gn),

" \n T.1/

F(xo)= J* H(xo) = J*( cp(1)) = J*( go).

It follow"s that F(xn) do not converge to F(xo), and hence F IS not
continuous at x o' I

THEORE~I 3.4. Let lvf be a closed subspace of a reflexive Banach space X.
If codim ,If> 1 and ,If is infinite-dimensional, then there exists an equivalent
norm on X such that 1\,f is Chebysher and the metric projection onto 1\;1 is no;
continuous.

Proof Let!1 ·Ii be an equivalent locally uniformly convex norm on X
(see [3]). Then the metric projection n onto M is single-valued and con
tinuous. By Lemma 3.3, there exists a mapping F: X'M ~ M which is
homogeneous, norm-to-weak continuous and not continuous. De!be
P = Fe Q ,H + n, where Q M is the quotient mapping. Clearly, P is
homogeneous and norm-to-weak continuous. P is also semi-linear W.r.r. ]v[,

because

P(x+ m) = F(Q.u(x + m)) + n(x + m) = F(Q\Ax)) + n(x) +m

=P(x)+m for x E X, m EO M.

By Theorem 2.6, P is a metric projection after renorming. It remains to
show that P is not continuous.

Take ~nEX/M such that ~n~~E~/AJ but F(~n) do not converge to
F(~). Denote by q the restriction on n- 1(O) on Q.w. Then, by Holmes'
theorem (Theorem 2.2), q is a homeomorphism of n-i(O) onto X/M. Then
the points Xf!=q-l(~n)converge to the point x=q-;(~), but P(x,,)=F(~f!;

do not converge to P(x) = F(~). This shows that P is not continuous
at x. I

COROLLARY 3.5. Let AI be a closed subspace of a reJ7exire Banach
space. Then AI is the range of a discontinuous single-valued metric projectiO!:
after renorming, if and only if "\,f is infinite-dimensional and J\;[ is not a
hyperplane in X.
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Proof The assertion is a direct consequence of Theorem 3.4 and of the
well-known fact that metric projections onto Chebyshev finite-dimensional
subspaces or onto Chebyshev hyperplanes in a reflexive space are
continuous. I

Considering Brown's example [1], it is natural to ask the following

Problem. Does there exist an equivalent norm from Theorem 3.4 which
would be in addition strictly convex?
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